

TECHNICAL WHITEPAPER

—

Oracle to SingleStore
Migration Overview
Eric Hanson, Principal Product Manager
Krishna Manoharan, Director of Solution Architecture
David Anderson, Principal Sales Engineer

July 2019

Oracle to SingleStore Migration Overview

—

Abstract
This paper describes how you can migrate applications running on an Oracle database to

SingleStore. SingleStore is a powerful, scalable, modern RDBMS that can run on-premises and in

the cloud. It supports high-performance operational analytics, transaction processing, and

traditional analytical applications.

Moving all but the largest and most complex applications from Oracle to SingleStore is feasible

because of SingleStore's high performance and broad feature set. SingleStore features that are

important to Oracle developers include ANSI SQL, a broad range of data types, primary and

secondary indexes, unique constraints, rowstore and columnstore storage structures,

transactions, non-blocking concurrency control, stored procedures, user-defined functions, and

more.

Performance features that can give dramatic price/performance gains over Oracle, and provide a

superior end-user experience, include scale-out, compilation of queries to machine code,

in-memory rowstore tables, and vectorized query execution for columnstores using

single-instruction, multiple-data (SIMD) support.

 2

Oracle to SingleStore Migration Overview

—

Table of Contents
Abstract 2

Introduction 5

DDL 6

Data Types 6

User-Defined Types 8

Semi-Structured Data: JSON and XML 8

Spatial Data 8

Character Sets and Collations 8

Defaults 8

Computed Columns 8

Physical Database and Index Design 9

Tracking Column Usage 10

Queries and DML 11

Expression language and built-in functions 11

Update DML 11

Outer Join Syntax 12

Recursive Query 12

Query Execution 12

Functions and Stored Procedures 13

Constraints and Triggers 14

Sequences 14

Partitioning 14

 3

Oracle to SingleStore Migration Overview

—
Views and Synonyms 16

Data Loading 16

Application Changes 17

Developing on SingleStore 17

Conclusion 19

References 19

 4

Oracle to SingleStore Migration Overview

—

Introduction
This paper describes the process of migrating applications running on an Oracle database to

SingleStore, a fast, powerful, scalable, modern relational database management system (RDBMS).

SingleStore has a number of advantages that make it an attractive alternative to Oracle, including:

● a scale-out architecture that runs on industry-standard hardware

● broad ANSI SQL support

● ACID transaction support

● programmability with stored procedures and functions

● fast query processing via compilation, in-memory optimizations, columnstore support, and

vectorization

● lock-free structures for non-blocking multi-version concurrency control

● support for fast ingest, high concurrency, and a mix of transactional and analytical

operations

● simpler to install, manage, and maintain

● ability to run on-premises and in the cloud

● competitive pricing

For an introduction to SingleStore, please see SingleStore Overview [Mem18]. For a more in-depth

discussion of SingleStore, refer to our documentation [Mem19a].

The rest of this paper describes how you can migrate Oracle applications to SingleStore in a

straightforward way. In addition, experienced Oracle developers may also find this paper useful to

help them understand how concepts they have used with Oracle can be applied in SingleStore.

Topics covered include DDL, queries and DML, functions and stored procedures, constraints and

triggers, sequences, partitioning, views and synonyms, and application changes.

 5

https://www.memsql.com/assets/MemSQL_Overview_August_2018.pdf
https://docs.memsql.com/

Oracle to SingleStore Migration Overview

—

DDL
Tables are created in SingleStore with the standard CREATE TABLE statement. SingleStore

supports a rich collection of column data types including numbers, strings, binary, blobs, date,

time, geospatial, and semi-structured (JSON).

Data Types

Oracle types can be easily mapped to SingleStore types [Mem19n], as illustrated in the following

table.

Oracle Type SingleStore Type Comments

VARCHAR2(size [BYTE
| CHAR])

VARCHAR

NVARCHAR2(size) VARCHAR

NUMBER [(p [, s])] DECIMAL [(p [, s])]

FLOAT [(p)] DOUBLE [(p)]

LONG TEXT

DATE DATE

BINARY_FLOAT FLOAT

BINARY_DOUBLE DOUBLE

TIMESTAMP
[(fractional_seconds_pre
cision)]

DATETIME
[(fractional_seconds_precision)]

Fractional seconds must
be 0 or 6 in SingleStore

 6

https://docs.memsql.com/sql-reference/v6.8/create-table/
https://docs.memsql.com/sql-reference/v6.8/datatypes/

Oracle to SingleStore Migration Overview

—

TIMESTAMP
[(fractional_seconds_pre
cision)] WITH TIME
ZONE

DATETIME
[(fractional_seconds_precision)]

Timezone information in
SingleStore is handled
by the application with
DATETIME and built-in
functions for time zone
offsets including
CONVERT_TZ

INTERVAL - INTERVAL types can't
be stored in SingleStore
but INTERVAL
expressions can be
combined with
date/time types with
DATE_ADD, DATE_SUB

RAW(size) VARBINARY

LONG RAW LONGBLOB

CHAR [(size [BYTE |
CHAR])]

CHAR(N)

NCHAR[(size)] CHAR(N)

CLOB TEXT

NCLOB TEXT

BLOB LONGBLOB

BFILE - Can use file name in
VARCHAR field plus file
system to store files in
SingleStore

 7

Oracle to SingleStore Migration Overview

—

User-Defined Types

SingleStore does not support user-defined datatypes. For such columns, it is recommended to

review the data type and convert them as needed manually. User-defined data types in Oracle that

are simply used as synonyms for standard types can be expanded to their actual type. More

complex user-defined types can be re-implemented as JSON, text, or binary fields, with

user-defined functions used as accessors to extract information from them or perform necessary

operations on them.

Semi-Structured Data: JSON and XML

SingleStore supports a built-in JSON data type [Mem19c] that can be used for semi-structured

data. Oracle character large object (CLOB) fields holding JSON data can be converted to the JSON

type when migrated to SingleStore. SingleStore does not directly support XML, but for XML data

that is interpreted completely in the client application, the data can simply be stored in a TEXT

field in SingleStore. For XML data that needs to be interpreted inside the database, it may be

appropriate to convert it to JSON format when moving it to SingleStore.

Spatial Data

Oracle developers that have used spatial data types such as SDOAGGRTYPE and

SDO_GEOMETRY can make use of the built-in GEOGRAPHY and GEOGRAPHY_POINT types

[Mem19d] in SingleStore to achieve similar results. SingleStore spatial indexes can be used instead

of the R-tree indexes supported by Oracle.

Character Sets and Collations

SingleStore supports the UTF-8 character set, which can handle all major languages.

Case-sensitive and case-insensitive collations are supported. Collation can be set at the cluster

level or at the connection level [Mem19m].

 8

https://docs.memsql.com/concepts/v6.8/json-guide/
https://www.memsql.com/content/geospatial/
https://docs.memsql.com/configuration-reference/v6.8/list-of-engine-variables/#collation-connection-collation-database-and-collation-server

Oracle to SingleStore Migration Overview

—

Defaults
As in Oracle, SingleStore column values can be set to a predefined value using the DEFAULT

syntax. The SingleStore TIMESTAMP type also allows default timestamps to be placed on new

rows, and a fresh timestamp to be placed on a row each time it is updated.

Computed Columns

In addition, SingleStore supports persisted computed columns [Mem19i], which can be formed

using an expression to compute their value from the values of other columns. Unlike Oracle,

SingleStore does not support non-persisted computed columns. Persisted computed columns or

views can be used as a workaround.

Physical Database and Index Design

SingleStore supports a broad range of physical database designs, which can accommodate

virtually all application needs. There are two major table types:

● Rowstore: suitable for transactional applications and hybrid transactional/analytical

applications [Mem19p]

● Columnstore: suitable for fact tables in data warehouses and data marts, and large tables

in primarily analytical applications with some operational characteristics, such as IoT

applications, telemetry systems, ad tech applications, and operational data stores

[Mem19q]

Rowstore tables support multiple ordered indexes, primary keys, unique indexes and unique

constraints, and hash indexes. Ordered indexes are specialized in-memory skip lists, which allow

compiled code to look up rows with very few instructions (about 10X less) compared to an Oracle

B-tree. Rows can be accessed extremely fast via any index. Rowstore searches via an index tend to

have very consistent (low variance) response time, an important benefit of SingleStore rowstore

compared to traditional B-tree access methods.

 9

https://docs.memsql.com/concepts/v6.8/persistent-computed-columns/
https://docs.memsql.com/concepts/v6.8/rowstore/
https://docs.memsql.com/concepts/v6.8/columnstore/

Oracle to SingleStore Migration Overview

—
Columnstore tables are highly compressed, typically by a factor of 5X to 10X, and store data in

million-row chunks called segments. Within a segment, columns are stored in separate files or

extents on disk. Each column of a segment has metadata to show the minimum and maximum

values in the segment, to support fast range elimination for equality and greater-than, less-than,

and BETWEEN filters. Columnstores support a single sort key for fast range elimination during

query processing. Single row lookup performance for columnstore tables is further improved in

the SingleStore 7.0 release using hash indexes and sub-segment access. These allow seeking into a

columnstore.

The only difference in CREATE table syntax between a rowstore and columnstore table is the

presence of the keywords USING CLUSTERED COLUMNSTORE to define the sort key.

A benefit of SingleStore column stores compared to the dynamically-built, in-memory

columnstores in Oracle, known as IMDB, is that they are persistent and don't have to reside in

memory. When the system restarts, SingleStore columnstores are still there in their entirety; no

CPU time needs to be spent to reconstruct them. Also, columnstores in SingleStore are available

standard on all versions, not just on selected hardware platforms or software versions, as is the

case in Oracle EHCC, which is a hybrid of rowstore and columnstore. Oracle EHCC is, to our

knowledge, only available on Exadata or when using ZFS/FS1 storage, not in the mainstream

software product. This provides a total cost of ownership (TCO) advantage when comparing

SingleStore to Oracle.

Operational applications from Oracle typically will use rowstores when migrated to SingleStore,

and use SingleStore memory-optimized, lock-free ordered indexes instead of B-tree indexes. Fact

tables from Oracle data warehouses and marts should be migrated to SingleStore as

columnstores, regardless of the table structure in the original Oracle system. Fact tables in Oracle

applications are often partitioned, but there is no need to explicitly partition such tables in

SingleStore. See the section on partitioning later in this document for more details.

SingleStore supports reference tables [Mem19e], which are replicated to each leaf node in the

distributed SingleStore architecture. These are ideal for dimension tables. Dimension tables being

migrated from Oracle to SingleStore should typically be implemented using reference tables. This

 10

https://docs.memsql.com/concepts/v6.8/table/#reference-tables

Oracle to SingleStore Migration Overview

—
allows star-join queries common in data warehouses and marts to be executed with less data

movement. Very large dimension tables, bigger than a few million rows, can be implemented as

standard distributed tables in SingleStore to avoid storing a large volume of data multiple times.

Because SingleStore is truly distributed, an important new capability called sharding is available to

use during physical database design. A table definition can specify an optional shard key, which is a

key used to hash partition the table. Typically you will shard a table on a primary key or other

natural key. The shard key can contain one column or several columns.

For fast joins of very large tables, you may wish to shard each table on the join column or columns.

This will enable what is known as a co-located join between the two tables, where the tables can be

joined without shuffling one or both of them first. Sharding in SingleStore is somewhat different

than hash partitioning in Oracle. For more information, see the section on partitioning later in this

document.

Tracking Column Usage

Oracle users may be familiar with running queries similar to the following against

sys.col_usage$ and related tables to understand how queries in their workload are using

columns in database tables:

select r.name as r_owner, o.name as r_table , c.name as r_column,
equality_preds, equijoin_preds, nonequijoin_preds, range_preds,
like_preds, null_preds, timestamp
from sys.col_usage$ u, sys.obj$ o, sys.col$ c, sys.user$ r
where o.obj# = u.obj# and c.obj# = u.obj# and c.col# = u.intcol#
and o.owner# = r.user# and r.name in ('ADD_SCHEMAS_HERE')
order by o.name

SingleStore supports built-in management views mv_aggregated_column_usage and

mv_query_column_usage [Han18b] that can be queried to find similar information about how

columns are used. This can enable the developer or DBA to choose appropriate columns for

indexing and sharding.

 11

https://www.memsql.com/blog/performance-for-memsql-67/

Oracle to SingleStore Migration Overview

—

Queries and DML
SingleStore supports broad SQL compatibility, including support for SQL-92, SQL-99 OLAP

extensions, and some SQL-2003 extensions. As an example of how comprehensive the SQL

coverage is in SingleStore, it can run all 99 queries in the complex TPC-DS benchmark [She19].

SingleStore includes support for all types of inner and outer joins, subqueries, EXISTS/NOT

EXISTS, UNION, UNION ALL, common table expressions (CTEs), a large set of aggregate

functions, CUBE, ROLLUP, grouping sets, PIVOT, window functions, and more. The large

majority of Oracle queries can thus be migrated to SingleStore without modification.

Expression language and built-in functions
SingleStore supports a sophisticated expression sublanguage, including all the built-in functions

and operators available in MySQL 5.5, as well as the Oracle-style date and time handling functions

TO_DATE(), TO_TIMESTAMP(), and TO_CHAR(), which support format masks as used in Oracle.

These functions are widely used in Oracle, and their presence in SingleStore is very useful to

reduce porting costs.

The NVL() function, to conditionally define a specified value for an expression if it is null, is

supported in SingleStore for Oracle compatibility. In addition, the concatenation operator symbol

|| that is commonly used in Oracle is supported in SingleStore. Using || for concatenation is

enabled in SingleStore through setting the SQL_MODE variable to include PIPES_AS_CONCAT.

Update DML

SingleStore supports INSERT, INSERT...ON DUPLICATE KEY UPDATE (a.k.a. UPSERT), DELETE,

and UPDATE DML statements. This includes both single-table and multi-table (searched) variants.

These allow almost all Oracle DML statements to be ported in a straightforward way. Oracle

MERGE statements can be ported to SingleStore using INSERT...ON DUPLICATE KEY or multiple

statements combined to achieve the desired goal, typically encapsulated in a stored procedure.

 12

https://www.memsql.com/blog/memsql-tpc-benchmarks/
https://docs.memsql.com/sql-reference/v6.8/to_date/
https://docs.memsql.com/sql-reference/v6.8/to_timestamp/
https://docs.memsql.com/sql-reference/v6.8/to_char/
https://docs.memsql.com/sql-reference/v6.8/nvl_and_ifnull/
https://docs.memsql.com/sql-reference/v6.8/concat/

Oracle to SingleStore Migration Overview

—
To enforce uniqueness, a unique index or primary key constraint can be used for rowstore tables.

For columnstores, uniqueness needs to be guaranteed by the application in some way if it is

required, say with a high-resolution timestamp column, or with a serial number or a composite

natural key provided by application logic.

Outer Join Syntax

Oracle supports a special syntax (+) for left and right outer joins which is not supported in

SingleStore. Queries that use (+) will need to be modified to use the SQL standard LEFT or RIGHT

outer join notation when moved to SingleStore.

Recursive Query

SingleStore does not directly support recursive query processing. Although CTEs are supported,

recursive CTEs are not. Also, Oracle applications sometimes use CONNECT BY to traverse graphs

or graph-like structures recursively. In SingleStore, recursive traversal is possible using a

temporary table and a query in a loop to expand one level through a graph or tree in each trip

through the loop. SingleStore documentation gives an example of this technique [Mem19l].

Query Execution

SingleStore query execution technology tends to be superior overall to Oracle query execution

technology, sometimes by a performance factor of up to 10x or more. Hence, query execution

performance is not typically a concern when migrating applications from Oracle to SingleStore;

rather, it is a motivating factor to move applications to SingleStore to get lower TCO, a better

user experience, and to enable applications that were not feasible before. Like Oracle,

SingleStore parameterizes queries, compiles them, and stores them in a plan cache. On

subsequent executions, SingleStore takes a query plan from the cache and runs it so it need not

be compiled again.

Unlike Oracle, SingleStore compilation translates a query all the way to machine code. This,

combined with in-memory row store storage structures designed with code generation in mind,

allows query processing rates on the order of 20 million rows per second per core against an

 13

https://docs.memsql.com/sql-reference/v6.8/create-procedure/#recursive-tree-expansion-example

Oracle to SingleStore Migration Overview

—
in-memory skip list row store table. That is about 10X faster than Oracle's per-core processing

rate against a B-tree in many cases.

For columnstore tables, SingleStore uses a high-performance vectorized query execution

engine that can operate on blocks of 4K rows at a time, very efficiently. This vectorized

execution engine also makes use of single-instruction, multiple-data (SIMD) instructions

available on Intel and compatible processors that support the AVX-2 instruction set. Processing

rates on columnstore tables are often over 100 million rows per second per core, and

sometimes as much as 2 billion rows per second per core when using SIMD and operations on

encoded (compressed) data [Mem19f, Han18].

Functions and Stored Procedures
SingleStore provides a built-in database programming language, SingleStore Procedural SQL

(MPSQL). MPSQL [MPSQL19] supports stored procedures (SPs), user-defined scalar functions

(UDFs), user-defined aggregates, and table-valued functions. Many of the programming

constructs and much of the syntax of MPSQL is modelled after Oracle PL/SQL.

SPs and UDFs in MPSQL can take zero or more arguments and can return values. In addition, an SP

can return multiple rowsets if desired. Control flow constructs in SPs and UDFs include:

- BEGIN-END blocks

- Conditional control

- IF … THEN … END IF

- IF … THEN … ELSE … END IF

- IF … THEN … ELSIF … THEN … END IF

- Iterative control

- LOOP … END LOOP

- EXIT and EXIT WHEN

- WHILE … LOOP … END LOOP

- FOR … LOOP … END LOOP

 14

https://docs.memsql.com/concepts/v6.8/understanding-ops-on-encoded-data/
https://www.memsql.com/blog/memsql-processing-shatters-trillion-rows-per-second-barrier/
https://docs.memsql.com/sql-reference/v6.8/procedural-sql-reference/

Oracle to SingleStore Migration Overview

—
- Loop Labels

- CONTINUE and CONTINUE WHEN

- Exception handling

- CALL stored procedure or function

- ECHO command to run stored procedure and output returned rowset to client

MPSQL does not have direct support for cursors, but does support executing a query using the

COLLECT() function [Mem19o] to produce an array of values. SPs can iterate through this array

result forwards or backwards, equivalent to a read-only cursor that can move in any direction.

In addition to comprehensive control flow, SPs support embedded SQL statements with inline

variable and parameter substitution. Dynamic SQL, including the Oracle-style EXECUTE

IMMEDIATE, is also supported.

 15

https://docs.memsql.com/sql-reference/v6.8/collect/

Oracle to SingleStore Migration Overview

—

Constraints and Triggers
SingleStore supports the following types of constraints:

● UNIQUE (enforced)

● UNIQUE … UNENFORCED [RELY | NORELY]

● PRIMARY KEY

Regular UNIQUE constraints are enforced by the system using an index. UNENFORCED ones can

be declared, which, as expected, are not enforced by the system; the application is responsible for

making sure they are maintained. If the RELY option is used, the query optimizer can take

advantage of these constraints to avoid certain operations, such as DISTINCT. All UNIQUE

constraints also tell the optimizer that the column is unique for statistical purposes.

PRIMARY KEY constraints are simply a syntactic variation of UNIQUE constraints.

The equivalent of CHECK constraints and referential integrity constraints are not supported in

SingleStore. These constraints need to be maintained with application logic. Similarly, SingleStore

does not support triggers, so trigger-style logic needs to be accomplished by the application,

potentially with the aid of stored procedures in the database - e.g., after an update, the application

can call a SingleStore stored procedure with the key of the updated record or records, and the

stored procedure can carry out logic that would have been accomplished in Oracle with an AFTER

UPDATE trigger.

Sequences
SingleStore supports declaring a column, which must also be a key, as AUTO_INCREMENT. The

system then gives this column a new, unique value for each additional row, similar to the way a

SEQUENCE is used in Oracle. If users desire the same behavior as SEQUENCES, they can

implement the equivalent with a small stored procedure and a table to allocate ranges of new

values.

 16

Oracle to SingleStore Migration Overview

—

Partitioning
Oracle application developers may be used to using range/list partitioning to enable data lifecycle

management, particularly a "sliding window scenario" for a large historical table. The benefit of

this is to enable fast bulk removal of old data by switching out a full partition of data into a

separate table with a metadata-only operation, then truncating it.

SingleStore can implement this same sliding window scenario with simple DELETE statements

because it can delete data extremely fast. So, while SingleStore doesn't support a range

partitioning feature per se, it can handle the primary use case that motivated the feature in other

products, including Oracle. There are several reasons that DELETE operations are so fast in

SingleStore, including:

1. The data is hash-partitioned by default, typically with one partition per core, and each

partition has its own log file, so the log tail is naturally partitioned, and log writes are

parallelized.

2. Old copies of a record don't have to be written to the log for undo/redo logging.

SingleStore logging is redo-only. Old record versions stay in the database data structures,

as a natural byproduct of multi-version concurrency control, enabling fast transaction

undo for deletes. To delete a record, only its ID is written to the log, not the full record

contents.

3. Deletes to columnstores just require updates to a delete bitmap to mark records as invalid,

not removal of the records. Records are removed asynchronously by a background merger

process.

4. Updates to the in-memory row store and the in-memory row store segment of the

columnstore (containing recent data) happen very fast because in-memory structures are

being changed, not disk-based structures. Less CPU is thus needed to do these updates,

and no I/O other than minimal log I/O (which is parallelized as discussed in item 1 above).

DELETE is almost always preferred for removing data in SingleStore compared with TRUNCATE.

TRUNCATE requires a global lock and invalidates plans and statistics. A DELETE is usually quite

 17

Oracle to SingleStore Migration Overview

—
fast, and it retains existing plans and statistics. TRUNCATE is still useful for bulk removal of all

data from very large tables when keeping plans and statistics around is not a concern.

Another reason Oracle developers use range partitioning is to enable queries with range filters on

the partitioning column to run faster, via partition elimination -- a technique that removes

partitions from consideration if they don't lie in the range of the query filter. SingleStore

columnstores have a sort key which can enable range elimination (also called segment elimination)

easily; it's not necessary to have a partitioning feature to benefit from range elimination in

SingleStore. Columns used for range partitioning (including subpartitions) are natural fits for the

sort key in SingleStore columnstores.

Oracle developers also sometimes specify hash partitioning as a way to subdivide data into

manageable-sized units for parallel query processing. This is not necessary in SingleStore, which

uses hash partitioning by default, with the standard level of parallelism being one thread per hash

partition [Mem19g]. To specify which column or columns to use to define hash partitioning, specify

a shard key [Mem19h] in SingleStore. The SingleStore hash partition granularity defaults to one

partition per core, which is appropriate for most use cases. SingleStore further allows CPU usage

for individual queries to be limited with the resource governor feature [Mem19z].

Views and Synonyms
SingleStore supports views, so CREATE VIEW statements can often be ported from Oracle to
SingleStore without changes. SingleStore does not support synonyms for tables, but views can be
used instead. For example, you can define t2 as a synonym for table t(a int, b int) as
follows:

CREATE VIEW t2 as

SELECT a, b

FROM t;

SingleStore uses a definer security model for views, as does Oracle, so the security model for

views in SingleStore aligns with that from Oracle.

SingleStore does not support materialized views. The dominant use case for materialized views is

to use them to hold summary aggregates, to speed up repetitive aggregate queries. The downside

 18

https://docs.memsql.com/concepts/v6.8/distributed-sql/
https://docs.memsql.com/tutorials/v6.8/optimizing-table-data-structures/#shard-keys
https://docs.memsql.com/operational-manual/v6.8/setting-resource-limits/

Oracle to SingleStore Migration Overview

—
of materialized views is that they can be expensive to maintain, they can limit the rate of

concurrent updates, and materialized view query rewrite is doesn't always take effect as and when

desired. SingleStore's philosophy is to use high-performance parallel query and compilation, along

with columnstores and vectorization, to ensure that processing queries against the raw, stored

data is so fast that precomputed aggregates are not needed. This simplifies the developer's job by

avoiding a challenging physical database design tradeoff.

Of course, there are some situations where the performance gains of using precomputed

aggregates are so high that it is worth the cost and complexity of maintaining them. In this case,

with SingleStore, you can create summary tables and query them directly [Ada06], rather than

relying on materialized query rewrite in the optimizer.

Data Loading
SingleStore supports a comprehensive loading capability with the LOAD DATA command

[Mem19j]. This supports flexible definition of field separators and row terminators. LOAD DATA is

partially parallelized in SingleStore - lines from input files are distributed to SingleStore leaves for

final loading. Load performance is a strong point of SingleStore, which can be configured to load

billions of rows per hour. In SingleStore 7.0 and later, trailing null columns can be ignored if

desired with LOAD DATA.

Oracle LOAD DATA commands can be converted to LOAD DATA commands in SingleStore,

typically with only limited changes. Rows with errors in them in SingleStore can be skipped during

loading and then output later using SHOW LOAD ERRORS. The errors can be placed into an

output file so the lines can be corrected and re-run through LOAD DATA.

Another popular loading feature in SingleStore is the PIPELINES capability [Mem19k], a streaming

loader that can load from file folders, Kafka queues, and S3 buckets. It can simplify applications by

removing the need for the developer to write an event-driven fetch-execute loop that monitors a

queue or folder for new data. PIPELINES allow distributed, parallel scale-out for loading, enabling

very fast ingest rates.

 19

https://docs.memsql.com/sql-reference/v6.8/load-data/
https://docs.memsql.com/memsql-pipelines/v6.8/pipelines-overview/

Oracle to SingleStore Migration Overview

—
PIPELINES also support transforms which can filter or change the structure of incoming data,

either with external scripts or executables, or inside the database using stored procedures. There

is no direct analogue in Oracle for SingleStore Pipelines, but Oracle developers may want to

consider them instead of LOAD DATA for new application development.

Application Changes
Most applications that utilize ODBC/JDBC connectivity will work natively with either the MySQL

or MariaDB client software. You can download the various clients and connectors, including

libraries for Python, C, C++, .NET, and Perl, from our Client Downloads page [Mem19r].

Note: When using the MariaDB JDBC client, be sure to include the database name in your

connection string or it will fail to connect. Here's an example:

"jdbc:mariadb://localhost:3306/databasename", "username ", "password");

See the SingleStore documentation for examples of how to connect as well as how to implement

concurrent-multi-insert statements using typical methods (Python, Bash, Java, C, C#, NodeJS)

[Mem19s].

Developing on SingleStore
There are multiple widely used database development and administration applications that are

compatible with SingleStore, including our own proprietary browser-based visual user interface,

SingleStore Studio [Mem19t]. For the most part, if an application is compatible with the MySQL

Wire Protocol, it should be able to connect to SingleStore. Our proprietary structures may not be

visible in their object explorers; however, the basic functionality should be available.

 20

https://docs.memsql.com/client-downloads/
https://docs.memsql.com/tutorials/v6.8/concurrent-multi-insert-examples/
https://docs.memsql.com/memsql-studio/latest/memsql-studio-overview/

Oracle to SingleStore Migration Overview

—
Some IDEs commonly used with SingleStore include:

● SQL Pro [Mem19v]

● SQL Workbench [Mem19w]

● MySQL Workbench [MySQL19].

If you are using the latest versions of MySQL Workbench, you will need to navigate to Connection

> Advanced and enter defaultAuth=mysql_native_password into the Others: text box

Additional information about how to connect to some common tools can be found in the

SingleStore documentation [Mem19x].

 21

https://docs.memsql.com/tutorials/v6.8/how-to-connect-to-memsql/#sequel-pro
https://docs.memsql.com/tutorials/v6.8/how-to-connect-to-memsql/#sql-workbench
https://www.mysql.com/products/workbench/
https://docs.memsql.com/tutorials/v6.8/how-to-connect-to-memsql/

Oracle to SingleStore Migration Overview

—

Conclusion
Moving applications from Oracle to SingleStore is possible because of SingleStore's support for

standard SQL and DDL, stored procedures and functions, Oracle-like expression language and

date functions, a generous set of data types, transactions, non-blocking concurrency control,

indexes, row store and columnstore tables, and views. SingleStore's true scale-out architecture,

in-memory row store, compilation of queries to machine code, and vectorized query execution

over columnstore tables give fast and, in many cases, truly stunning performance. This provides a

payoff for your end users if you make the switch. Moreover, the price-performance benefit of

SingleStore over Oracle can be dramatic.

Perhaps business requirements are forcing you to scale an existing application to the point where

it is no longer economically viable to use Oracle in general, or Exadata in particular. Maybe you

want to try a modern alternative to Oracle for a less complex application to avoid Oracle lock-in.

Or maybe you are seeking an alternative data management platform that's clould-native, as

business demands and new technology push your data and applications to the cloud. Whatever the

reason may be that you're exploring alternatives to Oracle, SingleStore is an attractive

destination. Once you make the switch with your first application, you can be confident that

SingleStore technology can benefit you, your users, and your business well into the future.

 22

Oracle to SingleStore Migration Overview

—

References
[Ada06], Christopher Adamson, Mastering Data Warehouse Aggregates: Solutions for Star

Schema Performance, Wiley, 2006.

[Han18] Eric Hanson, Shattering the Trillion-Rows-Per-Second Barrier With SingleStore, link,

2018.

[Han18b] Eric Hanson, SingleStore 6.7 Performance Blog, link, 2018.

[Mem18] SingleStore Overview, link, August, 2018.

[Mem19a], SingleStore Documentation, link, 2019.

[Mem19c], JSON Guide, SingleStore, link, 2019.

[Mem19d], Geospatial Guide, SingleStore, link, 2019.

[Mem19e], Reference Tables, SingleStore, link, 2019.

[Mem19f] Understanding Operations on Encoded Data, SingleStore, link, 2019.

[Mem19g] Distributed SQL, SingleStore, link, 2019.

[Mem19h] Optimizing Table Data Structures, SingleStore, link, 2019.

[Mem19i] Persisted Computed Columns, SingleStore, link, 2019.

[Mem19j] LOAD DATA, SingleStore, link, 2019.

[Mem19k] Pipelines Overview, SingleStore, link, 2019.

[Mem19l] Recursive Tree Expansion Example, SingleStore, link, 2019.

[Mem19m], SingleStore Collations, link, 2019.

[Mem19n] Data Types, SingleStore, link, 2019.

[Mem19o] Collect Function, SingleStore, link, 2019.

 23

https://www.memsql.com/blog/memsql-processing-shatters-trillion-rows-per-second-barrier/
https://www.memsql.com/blog/performance-for-memsql-67/
https://www.memsql.com/assets/MemSQL_Overview_August_2018.pdf
https://docs.memsql.com/
https://docs.memsql.com/concepts/v6.8/json-guide/
https://www.memsql.com/content/geospatial/
https://docs.memsql.com/concepts/v6.8/table/#reference-tables
https://docs.memsql.com/concepts/v6.8/understanding-ops-on-encoded-data/
https://docs.memsql.com/concepts/v6.8/distributed-sql/
https://docs.memsql.com/tutorials/v6.8/optimizing-table-data-structures/#shard-keys
https://docs.memsql.com/concepts/v6.8/persistent-computed-columns/
https://docs.memsql.com/sql-reference/v6.8/load-data/
https://docs.memsql.com/memsql-pipelines/v6.8/pipelines-overview/
https://docs.memsql.com/sql-reference/v6.8/create-procedure/#recursive-tree-expansion-example
https://docs.memsql.com/configuration-reference/v6.8/list-of-engine-variables/#collation-connection-collation-database-and-collation-server
https://docs.memsql.com/sql-reference/v6.8/datatypes/
https://docs.memsql.com/sql-reference/v6.8/collect/

Oracle to SingleStore Migration Overview

—
[Mem19p] Rowstore conceptual overview, SingleStore, link, 2019.

[Mem19q] Columnstore conceptual overview, SingleStore, link, 2019.

[Mem19r] SingleStore Client Downloads, link, 2019.

[Mem19s] Concurrent Multi-Insert Examples, link, 2019.

[Mem19t] SingleStore Studio, link, 2019.

[Mem19u] Modernizing Data Platforms with SingleStore, link, June 2019.

[Mem19v] Connecting SQL Pro to SingleStore, link, 2019.

[Mem19w] Connecting SQL Workbench to SingleStore, link, 2019.

[Mem19x] How to Connect to SingleStore, link, 2019.

[Mem19y] Modernizing Data Platforms with SingleStore, link, 2019.

[Mem19z] Setting Resource Limits, SingleStore, 2019.

[MySQL19] MySQL Workbench, link, 2019.

[MPSQL19], Procedural Extensions, SingleStore, link, 2019.

[She19], John Sherwood et al., We Spent a Bunch of Money on AWS And All We Got Was a Bunch

of Experience and Some Great Benchmark Results, link, 2019.

Keywords: fast database, scalable SQL, translytics, translytical, HTAP, hybrid transactional and analytical processing,

HOAP, hybrid operational-analytic processing, Oracle, Sybase ASE, Microsoft SQL Server, SAP HANA, MongoDB,

Elastic, Elasticsearch

 24

https://docs.memsql.com/concepts/v6.8/rowstore/
https://docs.memsql.com/concepts/v6.8/columnstore
https://docs.memsql.com/client-downloads/
https://docs.memsql.com/tutorials/v6.8/concurrent-multi-insert-examples/
https://docs.memsql.com/memsql-studio/latest/memsql-studio-overview/
https://www.memsql.com/resources/whitepaper-modernizing_data_platforms_with_memsql_2019/
https://docs.memsql.com/tutorials/v6.8/how-to-connect-to-memsql/#sequel-pro
https://docs.memsql.com/tutorials/v6.8/how-to-connect-to-memsql/#sql-workbench
https://docs.memsql.com/tutorials/v6.8/how-to-connect-to-memsql/
https://www.memsql.com/resources/whitepaper-modernizing_data_platforms_with_memsql_2019/
https://docs.memsql.com/operational-manual/v6.8/setting-resource-limits/
https://www.mysql.com/products/workbench/
https://docs.memsql.com/concepts/v6.8/procedural-extensions/
https://www.memsql.com/blog/memsql-tpc-benchmarks/

